8.1 Complex Numbers

Question Paper

Course	CIE A Level Maths	
Section	8. Complex Numbers	
Topic	8.1 Complex Numbers	
Difficulty	Hard	

Time allowed: 60

Score: /44

Percentage: /100

Given that $z_1 = 1 - 2i$ and $z_2 = -3 + 5i$, work out the following:

- (i) $Re(z_2 z_1)$
- (ii) $Im(z_1z_2)$
- (iii) $\left(\frac{z_1}{z_2}\right)^*$

For part (iii) give your answer in the form a + bi, where a and b are real numbers.

[6 marks]

Question 2

The complex number z satisfies the equation (2 + 5i)(z + 2i) = -7 - 32i. Find z, giving your answer in the form a + bi, where a and b are real numbers.

[4 marks]

WWW	.miked	lemy	/.com
-----	--------	------	-------

Question 3a

(a) Given that $z_1 = a - 6i$, $z_2 = 1 + bi$, and $z_1 z_2 = -17 - 9i$, where a and b are real numbers, find the possible values of a and b.

[4 marks]

Question 3b

(b) Using your answers to part (a), write down values for c and d that will satisfy the equation

$$-(3+i)(c+di) = -17-9i$$

[2 marks]

The equation $z^2 + bz + 18 = 0$, where $b \in \mathbb{R}$, has distinct non-real complex roots. Find the range of possible values of b.

[3 marks]

Question 5

Given that -3 + 2i is one of the roots of the quadratic equation $z^2 + bz + c = 0$, where b and c are real constants, find the values of b and c.

[4 marks]

$$f(z) = z^2 + 2iz - 10$$

- (i) Show that f(z) can be rewritten in the form $(z + ai)^2 + b$, where a and b are real numbers to be found.
- (ii) Hence find the solutions to the equation f(z) = 0.

[4 marks]

Question 7a

(a) Show that $\alpha = -1 + 4i$ is a root of the cubic equation

$$z^3 + 5z^2 + 23z + 51 = 0$$

[3 marks]

Question 7b

(b) Find the other two roots of the cubic equation in part (a), being sure to show clear algebraic working.

[3 marks]

Question 8

 $f(z) = z^3 + z^2 + cz + d$, where c and d are real numbers.

Given that 3 and -2-3i are roots of the equation f(z)=0, find the value of c and the value of d.

[5 marks]

For a complex number z, a square root of z is a complex number x+iy where x and y are real numbers and where

$$(x + iy)^2 = z$$

By expanding $(x + iy)^2$ and solving the resultant equation for x and y, determine the two square roots of the complex number z = -21 - 20i.

[6 marks]